Wavelet Method for Numerical Solution of Parabolic Equations
نویسندگان
چکیده
منابع مشابه
A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملNumerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملNumerical Solution of Functional Differential Equations using Legendre Wavelet Method
In this paper, the objective is to solve the functional differential equations in the following form using Legendre Wavelet Method (LWM), 0 f 0 u(t)=f(t ,u( t) ,u( (t))), t t t u( t)= (t), t t ′ α ≤ ≤ φ ≤ (1) where ƒ: [t0, tƒ]×R→R is a smooth function, α(t) is a continuous function on [t0, tƒ] and φ(t)∈C represents the initial point or the initial data. In the present paper, the most impo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Engineering
سال: 2014
ISSN: 2356-7260,2314-6443
DOI: 10.1155/2014/346731